
“Always Contribute Back”:
A Qualitative Study on Security Challenges of the Open Source Supply Chain

Dominik Wermke∗, Jan H. Klemmer †, Noah Wöhler ∗, Juliane Schmüser∗,
Harshini Sri Ramulu‡, Yasemin Acar ‡§, and Sascha Fahl ∗†

∗CISPA Helmholtz Center for Information Security, Germany,
{dominik.wermke,noah.woehler,juliane.schmueser,fahl}@cispa.de

†Leibniz University Hannover, Germany, klemmer@sec.uni-hannover.de
‡Paderborn University, Germany, {harshini.sri.ramulu,yasemin.acar}@uni-paderborn.de

§George Washington University, United States

Abstract—Open source components are ubiquitous in compa-
nies’ setups, processes, and software. Utilizing these external
components as building blocks enables companies to leverage
the benefits of open source software, allowing them to focus
their efforts on features and faster delivery instead of writing
their own components. But by introducing these components
into their software stack, companies inherit unique security
challenges and attack surfaces: including code from potentially
unvetted contributors and obligations to assess and mitigate
the impact of vulnerabilities in external components.

In 25 in-depth, semi-structured interviews with software
developers, architects, and engineers from industry projects,
we investigate their projects’ processes, decisions, and consider-
ations in the context of external open source code. We find that
open source components play an important role in many of our
participants’ projects, that most projects have some form of
company policy or at least best practice for including external
code, and that many developers wish for more developer-hours,
dedicated teams, or tools to better audit included components.
Based on our findings, we discuss implications for company
stakeholders and the open source software ecosystem. Overall,
we appeal to companies to not treat the open source ecosystem as
a free (software) supply chain and instead to contribute towards
the health and security of the overall software ecosystem they
benefit from and are part of.

1. Introduction

Open Source Components (OSCs) play an important
role in many companies’ and software teams’ setups and
processes. Whether as libraries and packages included in their
software, as foundation or glue for their development and
deployment processes, or as part of an even longer software
supply chain: Utilizing external software components as
building blocks in their processes and products enables
companies to leverage the benefits of Open Source Software
(OSS), allowing them to focus their efforts on features and
faster delivery. According to a 2020 RedHat report, 95%
of IT departments and companies consider OSS as strate-

gically important to their organization’s overall enterprise
infrastructure software strategy [1].

By introducing external components into processes and
their stack, industry projects inherit the unique challenges
and attack surfaces from open source projects: companies
are including code from potentially unvetted contributors
or sources and are now obligated to assess and mitigate
the impact of vulnerabilities from external code included in
their software. While not strictly open source, the impactful
SolarWinds Orion attack wave highlighted the industry’s
vulnerability to compromised external code components [2].
In December 2020, cybersecurity company FireEye discov-
ered that advanced persistent threat actors had created a
backdoor hidden in a software update of SolarWinds’ Orion
system, affecting almost 18,000 customers worldwide [3].
Malicious actors are aware of the widespread use of OSCs
in the industry and have tried to leverage this attack vector
in the past: In August 2022, 10 packages on the popular
Python Package Index (PyPI) were found to be malicious by
Checkpoint [4]. Installing one of these packages triggered
a malicious script, crawling the local browser storage for
passwords, cookies, and crypto-currency wallets, extracting
them via a Discord server hook. The integrity of OSCs is
not only threatened by malicious external actors: In a so-
called protestware incident, the JavaScript node-ipc library
(dependency of, e. g., @vue/cli and the Unity game engine)
was updated by the maintainer as a protest to Russia’s
invasion of Ukraine in early March 2022. Depending on
the version and if the machine’s IP matched a list of Russian
or Belarusian addresses, the library would replace all of the
user’s system files with heart emojis [5]. This and other
recent protestware incidents highlighted, that even initially
well-meaning changes can be conceived as threats to the
software supply chain and harm the trust in OSS.

In this work, we aim to shed light on the security
challenges and considerations of companies and software
teams around including OSCs in their projects and processes—
by exploring industry projects’ behind-the-scene processes,
provided guidance and security policies, as well as past secu-
rity challenges and incident handling. Our research approach
utilizes 25 in-depth interviews with software developers,

https://orcid.org/0000-0002-6994-7206
https://orcid.org/0000-0002-4172-9565
https://orcid.org/0000-0001-7167-7383
https://orcid.org/0000-0002-5644-3316
mailto:dominik.wermke@cispa.de
mailto:noah.woehler@cispa.de
mailto:juliane.schmueser@cispa.de
mailto:fahl@cispa.de
mailto:klemmer@sec.uni-hannover.de
mailto:harshini.sri.ramulu@uni-paderborn.de
mailto:yasemin.acar@uni-paderborn.de

architects, and engineers from a diverse sample of industry
projects and companies, to investigate the importance of
OSCs in companies’ software stacks, as well as related secu-
rity challenges and considerations, guided by the following
research questions:
RQ1. “How are Open Source Components included in
companies’ tech stacks in terms of position, importance,
and security effects?” OSCs hold an important role in many
companies’ software stacks. We are interested in the specific
roles of these components in the software stack, as well as
if and how these components are considered in the update
and security processes of the projects.
RQ2. “What are companies’ awareness, experiences, and
attitudes regarding the security of including external open
source code?” Including external OSCs in industry projects
introduces unique security challenges and attack vectors
such as code contributions from unvetted sources. We are
interested in companies’ awareness surrounding the security
of including external open source code, as well as their expe-
riences with, and past challenges of, including external code
in the context of security and updates. We are also interested
in the companies’ attitudes about including, managing, and
contributing back to open source projects.
RQ3. “If and how do stakeholders make decisions and con-
siderations around security and trust challenges of including
Open Source Components?” The major impact of security
challenges in OSCs justifies specific considerations. We are
interested in measures that companies utilize to decide on
including OSCs, what decisions and considerations they have
in place for the external code, and which improvements and
changes stakeholders consider.

This work is structured as follows: After this general
introduction (Section 1), we discuss related work in the
areas of dependency analyses and selection, security research
with software developers, and interview studies in a security
context (Section 2). We then describe our interview approach
(Section 3) and highlight our findings (Section 4). Finally,
we discuss our findings (Section 5) and draw a conclusion
(Section 6).

1.1. Replication Package

In line with the effort to support replication of our work
and help other researchers build upon it, this publication has
a companion website with a full replication package and an
artifact repository available.1

2. Related Work

In this section, we present and discuss related work
in three areas: research investigating dependencies and
the selection thereof, security research involving software
developers and similar stakeholders, as well as interview
studies with a focus on security. We also put our work into
context and illustrate the novel contributions of our research.

1. https://publications.teamusec.de/2023-oakland-oss-consumers/

Dependency Analysis & Selection. Dependencies are a
popular (security) software research topic, as they can
hide critical attack vectors and attack surfaces. Dependency
ecosystems are a common data source for measurement
studies in this field, e. g., for package repositories like
JavaScript’s npm [6]–[11], Python’s PyPI [12], [13], Ruby’s
gem [14], R’s CRAN [15], and the wider software ecosystems
like for Apache [16], Gentoo [17], Java [18], [19], or
Android [20], [21]. The inclusion of third-party dependencies
and the associated technical challenges have been studied and
compared across a variety of software ecosystems [22]–[25].
In 2020, Ponta et al. presented a novel method for detecting
vulnerabilities in OSS dependencies [26]. The propagation
of vulnerabilities within the npm ecosystem has been studied
with the help of dependency trees [27] and dependency
graphs [10]. The obfuscation-resilient detection of libraries
in Android apps has been advanced for in-depth analyses
of apps with a focus on malicious third-party libraries and
malware detection [28]–[30]. The selection of dependencies
is crucial for supply chain security. However, it is also a
major challenge because approaches, criteria, and metrics for
good and secure choices are hard to generalize and various
exist. In 2010, for example, Mileva et al. mined and evaluated
API popularity and trends for 200 Java projects [31]. The
authors demonstrate that it is possible to give adoption
recommendations based on past usage trends. Similarly,
libraries that are already included in a project can also
be used for further library recommendations, as Nguyen
et al. demonstrated with the library recommendation system
CrossRec [32]. In 2020, Xu et al. surveyed 49 developers
from GitHub and F-Droid to analyze reasons why developers
replace own code with a library, i. e. re-use, or re-implement
a library’s functionality [33]. In 2018, López de la Mora et
al. proposed a metric-based approach for informed adoption
decision when selecting and comparing libraries [34], [35].
Kula et al. conducted an empirical study on library migration
covering 4,600 GitHub software projects and 2,700 library
dependencies, finding that 81.5% of the studied systems still
keep their outdated dependencies [36].

Supply-chain attacks and vulnerabilities and challenges
have been systematized [37], [38] and analyzed to inform the
development of protective measures [39], [40], to improve
the accuracy of vulnerability alerts [41], and to better
understand the factors that influence dependency vulnerability
remediation in software projects [42]. Larios Vargas et al.
identified 26 technical, human, and economic factors that
developers consider in their dependency selection processes
based on 16 interviews and a survey with 115 developers [43].
Basak et al. investigated practices for secret management in
software artifacts [44]. More recently, in two preprints, Zahan
et al. utilized Open Source Security Foundation (OpenSSF)
Scorecards, both for investigating security features in npm
and PyPI, as well as their impact on security outcomes,
highlighting some impactful features [45], [46]. Compared to
prior work investigating dependencies utilizing measurements
and systematization, we leveraged interviews to investigate in-
depth the real-world selection and inclusion practices of, and
experiences around, open source components in companies

https://publications.teamusec.de/2023-oakland-oss-consumers/

and software teams, providing additional and enhancing
insights to previous measurement results.

Security Research with Software Developers. Research
investigating security aspects with developers, architects, and
engineers working on industry projects provide important
insights into the security and health of the overall software
ecosystem.

Past research investigated the security impact of different
aspects such as decision-making [47], [48], organizational
changes [49], [50], and information sources [51], [52].
Stevens et al. conducted a multi-stage study with 25 industry
employees investigating aspects of threat modeling [53].
Assal et al. surveyed 123 software developers about software
security processes, finding that the real issues frequently stem
from a lack of organizational or process support [54]. More
recently, Ladisa et al. introduced a taxonomy for attacks on
open source supply chains, validating their taxonomy by sur-
veying 17 domain experts and 134 software developers [55].
Similar to prior work with software developers, we consider
industry developers and software teams to play an important
role in the overall security and health of the software supply
chain.

Security Interview Studies. A common approach for in-
depth, qualitative research in the security community are
interview studies. Prior interview studies were conducted
to establish the security needs of expert communities
such as journalists [56], editors [57], and victim service
providers [58]. As part of larger studies, interviews allow
insights into specific mindsets and approaches, e. g., for
encryption tasks [59] or Tor usage [60]. Huaman et al.
conducted 5,000 computer-assisted telephone interviews with
small and medium enterprises in Germany, finding that
security awareness has arrived in all companies [61]. More
related to this work, past research has utilized interviews
to gain insights into the work and tools of experts such
as security professionals [62], app developers [63], and
administrators [64], [65]. Specifically, Botta et al. interviewed
12 security management professionals, finding that the job
of IT security management is distributed across multiple
employees [66]. Haney et al. conducted 21 interviews in
organizations including cryptography in products, finding a
uniquely strong security mindset in those companies [67].
More recently, both Jansen et al. and Ghofrani et al. con-
ducted smaller-scale interview studies with industry devel-
opers investigating the trust aspect of external software [68],
[69]. Compared to these smaller-scale, preliminary works,
our work focuses less on specific trust aspects, with our
approach covering the broader topic of OSC in companies,
covering real-world usage, company policies, and security
considerations. Gutfleisch et al. interviewed developers about
usability considerations in their secure software development
processes, identifying a high impact of contextual factors [70].
Wermke et al. interviewed 27 open source maintainers about
security and trust considerations in their projects, finding that
the projects were highly diverse both in deployed security
measures and trust processes [71]. Fourné et al. interviewed
24 participants from the Reproducible-Builds.org project,

identifying experiences that help and hinder adoption [72].
Compared to the last two, we also leveraged in-depth
interviews to gain detailed insights, but with a focus on
the “other” end of the open source software supply chain,
interviewing stakeholders of industry projects in the context
of OSCs they use.

Overall, we leveraged 25 interviews with participants
from industry projects to investigate the broader picture of
OSCs in companies and software teams, covering topics
including, but not limited to, real-world usage, company
policies, and security considerations.

3. Interview Study

In this section, we outline the interview approach in-
cluding the structure of our interview guide, the subsequent
coding and analysis steps, ethical considerations, and poten-
tial limitations of our research approach. The full interview
guide and codebook are included with the replication package
(cf. Section 1.1).

3.1. Study Setup

To investigate security considerations and experiences
around OSCs in companies and software teams, we con-
ducted semi-structured interviews (n = 25) with software
developers, architects, and engineers experienced in industry
software projects between May and October 2022. We opted
for interviews as a qualitative approach, because we wanted
to focus our investigation on processes not necessarily visible
on a software level and rationales, e. g., how a decision for
or against including a component is made, how incidents
are handled internally, or what the (potentially unwritten)
policies for including external code look like. Conducting
this research study as interviews also allowed us to explore
participants’ decisions and considerations in-depth by asking
follow-up questions.
Interview Guide. We conducted the interviews with an
established interview guide based on our research questions.
In addition to our research questions, we also considered
concepts and findings from previous and ongoing related
work and adapted them for in-depth interviews. We gathered
feedback from, and tested the initial interview guide with, pi-
lot interviews in the team and with industry stakeholders from
our professional network. After the initial pilot interviews,
we only performed relatively minor changes: Adding a few
minor follow-up questions to improve coverage of interesting
areas, updating some question wording, and moving questions
between interview guide sections for better interview flow.
No further changes beyond minor grammatical modifications
were added after the 8th interview. The full interview guide
is included in the replication package (cf. Section 1.1).
Recruitment and Inclusion Criteria. We based our recruit-
ment approach around covering a diverse set of industry
projects utilizing OSCs. For recruitment, we utilized mul-
tiple recruitment channels to better reach a diverse set of
companies from different historical, structural, and industry

TABLE 1. DETAILED OVERVIEW OF INTERVIEWED SOFTWARE DEVELOPERS, THEIR PROJECTS, AS WELL AS SOME PROJECT METADATA. ACCORDING TO
OUR INTERVIEW GUIDELINES, PARTICIPANTS WERE ASSIGNED AN ALIAS AND THEIR PROJECTS’ METADATA WAS BINNED TO PRESERVE THEIR PRIVACY.

Alias
Interview Projects

Duration Codes1 Recruitment Channel Position2 Area Software Stack2

P01 46:21 31 Professional Network Developer Machine Learning Python, Flask, AWS
P02 50:59 34 Professional Network Sec Engineer Finance, VR JavaScript
P03 33:54 29 Professional Network Lead Dev Embedded C, STM32
P04 29:02 29 Professional Network Team Lead Mobile Android
P05 39:19 31 Professional Network Lead Engineer Framework Python
P06 30:21 26 Professional Network Developer Industry Java, Spring
P07 38:20 25 Industry Expert Senior Engineer Finance Node.js, SQL
P08 54:15 24 Industry Expert Lead Dev Web Apps PHP, Laravel, MySQL
P09 35:17 36 Industry Expert Lead Dev Web Apps Angular JS, ASP.NET, Python, C#
P10 40:33 27 Industry Expert Architect Various Java, Maven, Terraform
P11 41:01 26 Industry Expert Senior Engineer Enterprise Apps Java, Node.js, Angular JS
P12 52:04 27 Industry Expert Founder Enterprise Apps Java
P13 25:20 30 Industry Expert Developer Web Apps PHP, WordPress
P14 36:50 28 Industry Expert Developer Backend React
P15 49:51 19 Industry Expert Consultant Various Java
P16 49:24 35 Industry Expert Developer Finance Angular JS, Vue.js
P17 26:25 30 Industry Expert Architect Various ASP.NET, Angular JS, React Native
P18 39:25 32 Industry Expert Developer Mobile Android, Spring, Angular JS
P19 27:39 30 Industry Expert Expert, Architect Embedded Terraform
P20 29:04 33 Industry Expert Developer Enterprise Apps JavaScript, Ruby on Rails
P21 33:29 22 Industry Expert Developer Health & Wellness Java, PostgreSQL
P22 51:04 28 Industry Expert Team Lead Web Apps JavaScript, React, Node.js
P23 28:09 25 Industry Expert Developer Web Apps .NET, C#, React
P24 43:04 28 Industry Expert Developer, Auditor Mobile C++, C-Basic, C#, Flutter
P25 33:56 30 Industry Expert Developer Blockchain React, Python

1 Total number of codes assigned to the interview after resolving conflicts. 2 Based on self-reporting of participants and binned to preserve their privacy.

contexts. This included recruiting expert talent via Upwork
and our professional network:

1) Industry Experts. For recruiting expert talent, we turned
to Upwork, a platform for professional developers and
freelancers. We posted a job posting for our interviews
and specifically selected participants based on their
experiences working in company projects utilizing some
form of open source, aiming for a diverse sample with
a broad coverage of the industry.

2) Professional Network. In addition to Upwork, we en-
hanced our sample with professionals from our own
network, specifically targeting software solutions that
are less commonly encountered in industry but still play
important roles, such as embedded hardware or research
software projects.

See also Table 1 for an overview of interviewed par-
ticipants and corresponding recruitment channels. Due to
the previous filtering, we did not require any additional
eligibility criteria from our participants beyond stating that
we were looking for professionals working on industry
projects utilizing OSCs. In total, we recruited 25 participants
from equally as many distinct companies and projects. As
compensation for their valuable time as domain experts, we
offered each participant $60 or the equivalent value in local
Amazon vouchers.
Interview Procedure. We conducted the 25 interviews
either in a solo interviewer or lead and backup interviewer
configuration. We chose the lead and backup interviewer
setup so that the lead interviewer can fully concentrate

on asking questions and listening to the interviewee, and
the backup interviewer could ensure that no questions are
forgotten, ask additional follow-up questions that emerge, or
take over in case of any connection issues. We conducted
all interviews virtually; mostly via our self-hosted Jitsi
instance, or any other tool of the participant’s choice (e. g.,
Zoom, Google Meet, etc.). We advertised the interviews with
a duration between 35–45 minutes depending on answer
duration and scheduled one hour interview appointments
for some time to spare. Overall, the median duration of the
actual interview part, excluding short introduction, consent
gathering, and debriefing, was 38:20 minutes.

In general, the interviews were based around non-leading,
open questions, allowing interviewees to elaborate their
thoughts and answers. Each interview section started with a
general question, allowing participants to freely state what
they had on their mind. Only if specific points were not
already addressed by that time, we asked more specific sub-
questions as follow-ups. All interviewers were instructed not
to prime participants through the questions and not to impart
any sense of judging, e. g., regarding specific OSC choices
or security practices.

3.2. Interview Structure

We report on the structure of the semi-structured inter-
views below and in Figure 1. The interviews were structured
in six main sections consisting of one to four opening
questions, corresponding follow-up questions, and sometimes

Intro
Introduction to interview context, informed consent
disclosure, and obtaining verbal consent.

1. Projects and Participants
Establish participant’s industry context, past and current
projects, as well as general project structure and tooling.

2. Usage of Open Source Components
Explore usage behavior, criteria for OSC selection, as well
as the how these components are integrated in the projects.

3. Security Policies and Guidance
Identify security policies and guidance regarding external
code, policy content, and applicability. Investigate how and
by what policy OSC-related security incidents are handled.

4. Experiences with Open Source Components
Establish general experiences using OSCs, how they are
updated, and how they are related to releases of the actual
project.

5. Challenges and Incidents
Establish opinions of a past incident and general handling
of OSC incidents, previously encountered supply-chain
related challenges, and inconveniences in participants’
projects.

6. Problems and Improvements
Explore participants’ view on problems and potential
improvements of the software supply chain.

Outro
Collect any additional remarks, feedback, and conducting
a debrief for the interview.

Figure 1. Overview of the interviews’ flow and topics. After introducing
each section with a general question, we followed-up with specific questions
(if not already covered). Due to our semi-structured interview approach,
participants were allowed to diverge from this flow at any time.

additional nudges or explanations. We also report on the
results from the interview in sections corresponding to the
interview guide’s question sections (cf. Section 4).

Before starting the interview, we provided participants
with a general introduction of ourselves and our research
project, followed by an explanation of our goals, the inter-
view process, and the interview’s role in that process. We
specifically affirmed to participants that participation in the
interview is voluntary, that they could skip any question for
any reason, that we were not judging their projects in terms
of security or privacy, and that we were also very interested
in their personal thoughts and opinions about processes. We
guaranteed full de-identification of any quotes we might use
and offered to send participants a preprint of the potential
scientific publication based on their interviews.

After answering any remaining questions and obtaining
consent for data handling and recording from the participant,
we started a recording and began the actual interview with

the following structure:
1. Projects and Participants. In the first interview section
we asked our participants to describe their projects, their
relation to it, as well as project structures and tooling. This
section intends to both ease nervous participants into the
interview and to establish some initial context about the
participant and their projects. Specifically, we prompted for
project context and structure, team size and tools, as well
as for the development process and stages. We report these
results in Section 4.1.
2. Usage of Open Source Components. Both the “Usage
of Open Source Components” and “Thoughts about Open
Source Components” sections investigate the usage of open
source components in our participants’ projects. Specifically,
we were interested in the technical implementation and
processes, selection and exclusion criteria for open source
components, as well as whether they contributed back to
open source projects in some way. We report these results
in Sections 4.2 and 4.3.
3. Security Policies and Guidance. Our third block of
questions covers security policies and guidance for including
external code like OSC in projects. We asked about company
policies and project-specific guidance or documentation
for the inclusion of external code, and the participants’
personal opinions and wishes regarding these. Additionally,
we investigated the general processes and policies for security
incidents in external components. We report these results in
Section 4.4.
4. Experiences with Open Source Components. The fourth
section focuses on the participants’ personal experiences with
OSCs in their projects. Our questions covered aspects such as
the developer experience of using OSCs and if components
had to be customized for the projects. We also investigated the
update, release, and deprecation procedures of the projects in
the context of external components. Lastly, we asked whether
our participants would use the same components again and
why. We report these results in Section 4.5.
5. Challenges and Incidents. In the fifth interview section,
we are interested in specific OSC-related security incidents
and inconveniences experienced by our participants in the
past. To ease our participants into this sensitive topic,
we asked them about their opinion regarding open source
software supply chain security of the “node-ipc protestware”
incident from March 2022 [5]. We inquired about participants’
opinion of the incident, as well as for their strategies to deal
with similar incidents in their project. We then specifically
asked them about any OSC-related security incidents or
inconveniences their projects might have encountered in the
past. We report these results in Section 4.6.
6. Problems and Improvements. In our final interview
section, we investigate our participants’ opinion of their
projects’ security, as well as problems they see with the
current software supply chain and their suggested solutions.
We report these results in Section 4.7.

Following the interview sections, we asked our partici-
pants for any additional insights and aspects that we might

have missed or they wanted to talk about. After completing
the interview, we thanked them for their valuable time and
offered them an opportunity for questions and comments,
concluding the interview with a debriefing.

3.3. Coding and Analysis

For our evaluation of the interviews, we recorded the
audio of interviews digitally, removed identifying information
from recordings, transcribed them via a GDPR-compliant
service, and manually reviewed all transcripts for potential
transcription mistakes. We analyzed all interview answers
in an iterative semi-open coding approach [73]–[75]. All
researchers together established an initial codebook based
on the interview guide and interview impressions. Five
researchers then iteratively coded the interviews according
to the codebook in multiple rounds, resolving conflicts
by consensus decision or by introducing new (sub)codes
after each iteration. We continued with our iterative coding
approach until no new codes or themes emerged [76], [77].
Our approach does not necessitate the reporting of inter-
coder agreement, as each conflict is resolved when it emerges
(resulting in a hypothetical final agreement of 100%) [78].
In total, we assigned 715 codes after resolving, resulting
in a median of 29 codes per interview. The final codebook
is included in our replication package (cf. Section 1.1). As
part of discussing our results, we report on some counts. We
want to highlight that counts from a qualitative interview
study with a sample selected for diverse background are not
intended to be representative counts for the wider developer
population, but are included to give some general idea about
the distribution of codes and to highlight especially prevalent
or underrepresented themes in the interviews.

3.4. Ethical Considerations & Data Protection

This interview study was approved by our institutions’
Institutional Review Board (IRB) as well as Human Subjects
Review Board (IRB equivalent). Our study was modeled
after the ethical principles for research involving information
and communication technologies outlined in the Menlo
report [79]. The research plan, study procedure, and all
involved research parties adhered to the strict German
data and privacy protection laws as well as the General
Data Protection Regulation (GDPR). Before signing up for
interviews, we provided participants extensive information
about our study procedure and data handling, encouraged
them to get informed before making a decision, and offered to
answer any questions they may have had. We emphasized to
participants that they could skip any question for any reason
such as not knowing an answer, not wanting to answer, or
not being allowed to answer, as well as that they could drop
out of the interview at any time. We provided participants
with a preprint of this work before publication, allowing
them to request changes or to correct misunderstandings. To
compensate our domain expert participants, we offered them
$60 or the equivalent value in local Amazon vouchers.

All data was collected, handled, and stored in compli-
ance with the EU’s GDPR. In accordance, any personally
identifiable data was stored in a secure cloud collaboration
software, encrypted at rest and in transit. For transcribing
the interviews, we commissioned an EU-based, fully GDPR-
compliant transcription service.

3.5. Limitations

A number of limitations typical for this kind of interview
study apply to our work, including potential over- and under-
reporting, self-reporting, recall, and social-desirability biases,
as well as sampling bias. Our sample is a convenience sample
which may not be representative of the larger population
of developers working on industry projects utilizing OSC.
Experts who agreed to participate in our study might be
more or less open source or security-oriented than those did
not sign-up for an interview. We conducted our interviews in
English, so we cannot provide insights into non-English-
speaking industry projects. As English is the de facto
“working language” of international software projects, we
consider this a negligible drawback that still allows us
to reach a meaningful set of developers. Since questions
about security practices and incidents can be considered
sensitive, we attempted to mitigate social desirability bias by
emphasizing that we were not going to judge the participants
or their answers in any way but were genuinely interested
in their processes and opinions. We also reminded them that
they could skip questions as desired and for any reason.

4. Results

We report and discuss results for 25 semi-structured
interviews with software developers, architects, and engineers.
In our reporting, we mostly adhere to the structure of the
interview guide described in Section 3.2 and summarize our
key findings after each question block. We report partici-
pants’ quotes as transcribed, with de-identified information,
minor grammatical corrections, and omissions highlighted
by brackets (“[. . .]”).

4.1. Projects and Participants

In total, we interviewed 25 valid participants, reporting
on their projects and background in this section and Table 1.
We only report binned project metrics to preserve both
our participants’ and their projects’ privacy. Due to our
recruitment approach aiming for a high diversity in projects,
our participants reported a wide range of projects and
backgrounds, ranging from web applications, over embedded
devices, to scientific computing frameworks.

As the vast majority of our participants (23) had worked
on multiple projects in the past, we encouraged them to
highlight aspects of their projects as they saw fit. The
majority of our participants (22) worked or had worked
on projects in teams, specifically with two to five (9) or
more than five (13) developers. About half (13) mentioned

having worked on projects with multiple teams, e. g., “We
are a very flat team, so basically everyone is on the same
level. We discuss things together and we work together. We
have a development team for back-end code, for front-end
code, and the design team.” (P13) We were also interested
whether this included specific teams or members with a
security background: 11 participants mentioned security-
specific roles on their projects, e. g., “Yes, we have online
software security engineer or cybersecurity engineer [. . .].
Then you have more dedicated roles for the information
assurance processes and some of the other cloud based
[services].” (P19) These 11 also include security-specific
roles provided by clients, e. g., for P12: “Actually, most of
the time, our clients are enterprise clients and we hand over
the codebase to them and then their security team.” (P12)
About half of our participants (13) specifically mentioned
not having someone with security-specific background or
experience in the loop, e. g., “No, I haven’t worked with
any company [that] had something like [a security-specific
role].” (P18)

Overall, we found our participants to be quite knowledge-
able about their projects, with many years of experience in
different areas of software development. This allowed us in-
depth insights into the considerations around OSCs in their
projects, a goal we hoped to archive with our recruitment
strategy. Based on our findings, an interesting area for future
research could be how security processes differ between the
different industry areas.

Summary: Projects and Participants. The majority of our
participants had worked on multiple projects in a diverse
set of software areas, and in different team configurations
and sizes. Only about half mentioned security-specific
roles in the development loop.

4.2. Usage of Open Source Components

In this interview section, we were interested in the
general usage and selection criteria of OSCs (for specific
experiences with OSCs, see also Section 4.5). All 25 of
our participants mentioned using OSCs in their projects
(unsurprisingly, as we specifically selected for this), e. g.,
“Every solution that we have built, we heavily use open-
source components.” (P10) Some participants even voiced
a philosophical attachment to the idea, e. g., “We are using
a lot of open-source things because, by philosophy, we
like to embrace open-source community” (P07), including
perceived benefits such as reduced maintenance burden: “The
software is well maintained, and we don’t have to focus on
maintaining the work. We can just use them, and if we see
any problems, we can contribute to this and we don’t have
to do any in-house maintenance.” (P07) For pulling in OSCs
into their build processes, our participants have a number
of different approaches, often relying on the (semi-)official
package repositories such as PyPI or npm, e. g.,

“So for builds we use npm and also some other
package managers. Usually it’s a mixed project
with different code bases, and we pull the packages

directly from the package managers. I don’t think
we currently have any that are not managed by
package managers, which is great.” — P02

Aside from package repositories, some participants men-
tioned directly pulling from repositories if there are no other
options available: “[For] some of the dependencies, if either
the current version is not maintained [on PyPI] or for some
machine learning tools [. . .] we pull them directly from the
Git repo for them.” (P01) Others mentioned directly pulling
from GitHub as a potential security concern:

“I think some components are fairly secure because
we draw from sources posted and maintained by
hardware manufacturers. [. . .] These are open
source components, but they have major corporate
backing behind them, and we’re not pulling it from
GitHub.” — P04

Some participants specifically mentioned configuring and
modifying OSCs to fit their needs and the requirements
of their projects: “We pull them in, and then all of these
open source components, we take them and then we do a
bit of work on it ourselves. So, for example, we run packet
managers and we add an external code.” (P17)
Updates & Releases. As for keeping their OSCs up-to-date,
our participants seem to follow the same pattern for pulling
in components, i.e., relying on the package management tools
of their software stack, including tools like npm audit: “We
even have a mechanism that lets the build fail if there is a
component that could not be updated if an update is available
or if there is a vulnerability reported by npm, for example.”
(P02) Others routinely revisited included components: “It’s
some of the external dependencies that, yes, can go out of
date or can disappear, that are more of a cause of concern.
That’s why we periodically revisit that whenever we upgrade
or whenever we make a new release.” (P04) Outside of
the build and update process, some participants mentioned
to keep track of included components via their package
managers, but only one specifically mentioned maintaining
a Software Bill of Materials (SBOM): “We do regular scans,
we build Software Bill of Materials [. . .] and we put those
Bill of Material files into Dependency-Track which is free
software, open source provided by OWASP that we also use
for vulnerability management and overview.” (P02) Both
tooling and research around the recently established SBOM
format might be a promising research opportunity.

Of our 25 participants, 14 mentioned that they (at least
partially) use internal mirrors for pulling software into
their build processes, e. g., “We do use internal mirrors
mainly for speed and convenience, especially large code
bases. [. . .] Usually, when we clone from those internal
repositories, we’re going to use fixed commits from it, so it
makes development a lot easier,” (P04) and three participants
mentioned other solutions like local build caches: “We have
a local cache. So we try to have everything pulled only once
and put it in our cache, but sometimes we get upstream
changes, so we pull it from there.” (P03)
Selection Metrics. We were interested in what metrics and
criteria our participants use for deciding on and selecting

OSCs. Most commonly mentioned metrics included: some
form of popularity measure like downloads or GitHub
stars (16), a large and active community (11), specific
features (10), and activity measures like commit frequency
and recent releases (10). We were also interested in what
criteria would exclude an component from being used by our
participants. Most common exclusion criteria included: the
project being visibly inactive (5), a low number of contribu-
tors (4), and specific company policies (3). On the security
side, participants mentioned looking for a positive security
history (8) and exclusion based on vulnerable or malicious
code (3), e. g., “if the vulnerability score is ridiculously
high, obviously, then we would not allow that [component].
Also, if certain vulnerabilities exist for functionalities that
we want to actually use, if those are compromised, then
obviously it’s not a good choice.” (P02) Lastly, we were
interested in whether our participants had used or heard of
recently emerging automatic metric tools before, such as the
OpenSSF Scorecards for repositories. The majority (17) had
not, and only four had heard of (but not used) the OpenSSF
Scorecards project specifically: “Yes, I have heard of those,
but we have not used them yet.” (P02) For other metric tools,
e. g., P12 mentioned: “We are using some integrated code
quality tools, and there are some predefined, maybe hundreds
of rules to check the quality of the code. These tools also
provide a feedback on code security.” (P12)

Overall, our participants’ selection metrics and criteria
seem to focus on quickly accessible numbers and facts, such
as downloads, GitHub stars, and time since the last release.
Understandably so, as there a often many different open
source packages to be considered for each use case.

Summary: Usage of Open Source Components. All of
our participants included OSCs in their projects. About
half maintained internal mirrors or caches for their builds.
Common selection and exclusion criteria included easily
visible metrics like activity, number of contributors, or
GitHub stars.

4.3. Thoughts about Open Source Components

Aside from our participants’ usage of OSC in their
projects, we were also interested in their thoughts about
supporting the open source ecosystem, company policies
prohibiting packages, and which metrics they would like to
use for selecting components.

We asked participants if their company contributed back
to open source projects in some form including pull requests
or issues, which 14 do and five would like to, e. g., “We rarely
submit PRs, but we submit issues, and if we find some bugs
or enhancements regularly, because, often, there are some
bugs, and also, we found a few security-related, actually.”
(P01) Some participants even mentioned contributing back
as a company policy: “We also do heavy contribution on
anything that is being leaky, or if something is not looking
right, we always create issues. This is something that we
also have in our company policy: Always contribute back.”
(P07) Sometimes, this contribution was out of necessity: “[A

feature] never made to production because the [open source]
project went dead completely. When we were thinking about
the operation of the new release, we basically had to take
over, fork it, and then implement that feature on our own.”
(P10) Some participants suggested that their management or
legal departments do not fully understand the open source
ecosystem, e.g., “I think the responsible people just didn’t
understand the whole scope of OSC options that a developer
has, because they’re mostly managers and legal people, and
they don’t have so much insight in technical stuff.” (P16)

For the three cases where company policies prohibit
specific packages, reasons often involved the package’s
license: “Many open source projects are using different
licenses, some of the licenses are not okay for big projects
[. . .] we check if this package is using restricted license [. . .] ”
(P24) and “There are no rules, except that the license has
to be compliant with what we do.” (P01) Some mentioned
that they include their clients in these decisions: “There are
certain exclusion criteria based on our customers’ concerns.
For example, if they don’t want us using products from
certain companies, then we don’t do that.” (P04) We were
also interested in what selection criteria our participants
would like to use if they could. The wishes included specific
(free) software solutions:

“I think there are many interesting software so-
lutions as far as I could see. So most of them,
obviously, combined with costs. I saw a lot of
software that is supposed to help with managing
third party vulnerabilities and so on and used for
scanning. It’s always a question of the price and
most of the time I would say it’s not really worth
it.” — P02

as well as security-focused metrics: “It would be nice to
have some security metrics. How much security leaks [the
project] has, or in what time frame it will be fixed, or what
time frame fixed for last issues.” (P11) Based on our findings,
we suggest developers might require metrics and tools that
are still simple and free, yet cover more aspects of an OSC
than just popularity.

Overall, our participants seemed to have a very positive
attitude about open source projects and are aware of the
importance of contributing back.

Summary: Thoughts about Open Source Components.
Most projects contributed back to open source projects in
some form or would at least like to, with some participants
suggesting that their management or legal departments
do not fully understand the open source ecosystem.
Some participants mentioned that their company’s policy
prohibited them from using certain open source packages,
mostly due to non-permissive licenses.

4.4. Security Policies and Guidance

In this interview section we were interested in the policies
around OSC usage in projects, as well as provided guidance
and documentation for external components. More than half

(16) of our participants mentioned some form of company
or team policy for including external code in their projects.
These policies range from quite strict: “Every single third
party library that is used, installed, involved in our projects
is vetted and must be approved.” (P02), over somewhat more
lenient: “We can use anything that is signed off by our CTO
and our project lead. Like any piece of code that has been
vetted by them, we are free to use it on our projects.” (P07),
to fully placing trust on the individual: “[The policy is to]
make sure that the plugins or open source components that
we use are still updated and they’re still supported. We
wouldn’t want to include something very old, but it very
much depends on the developer to make sure of that.” (P13)
This number also includes more or less informal policies
that are nonetheless applied by the developers of the project,
such as: “Not on a systematic basis, but most of the time
my team if we are using a new library, that we are going
to use it for the first time, we are actually checking it in
vulnerability databases.” (P12) Participants also mentioned
policies influenced by external laws and standards such as
HIPAA: “If we are including something which is not self-
hosted, then we have to take [HIPAA] into consideration
with what they claim happens with the data on their end.”
(P17) as well as ISO: “In some [client] companies, [policy]
follows the standard security programs like ISO and things
like that.” (P10) Other policies are less concerned with actual
security and more with copyright, e. g., “at [company], we
were allowed to use things like npm and Angular, but we
had to basically extract all the legal stuff, so the licenses
basically, compile a list and give it to them.” (P16)

We were also interested in what our participants wished
to see in a (security) policy for external code, which included
some more general advice “You need to have clear guidance
on how to select packages, which quality, how you would
define the quality of the package.” (P16) as well as specific
security considerations such as: “[. . .] doing searches to see
if the software that we’re considering using has had any
prior issues, whether it’s security issues, whether they’ve
been disclosed through penetration testing or through some
other means [. . .].” (P09) Both P17 and P18 mentioned why
such a policy might not be relevant or even a good idea
for every project size: “For small projects, I don’t think
those policies would help because they would create more
governance and more red tapes.” (P18) and

“With the size of our team I don’t believe [a policy]
is really needed, because if a developer wants
to include a component, the code is generally
reviewed before it goes in by people who would
be in the know whether or not this component can
be included.” — P17

As part of policies, we were interested in how a potential
security incident in an external component would be handled,
by what policy, and by whom (for actually encountered
incidents, see Section 4.6). Only six of our participants
mentioned that they would involve or hand a hypothetical
incident to a security team, e. g., “We’ll tell [the security
team], hey, this needs to be patched pretty soon, and if it

doesn’t happen then we escalate it to the management above
it, and we exert pressure on both ends.” (P04) P18 provided
us some insights on why a security team does not necessarily
make sense for every company structure:

“There’s no security team that specifically would
do that because if there is a team that exists that
only does that, they would probably just sit on their
hands with nothing to do a lot of time, and this team
needs to work across different projects across the
company, then that they can handle that because
the different projects in a company probably have
a lot of languages, different languages, different
frameworks. There’s no way either they will know
enough to poke in the project and respond fast
enough, or there’s no way the company is willing
to pay money for that for a team that doesn’t
produce anything.” — P18

We were also interested in whether companies had
included a disclosure policy for security issues. Only seven
participants mentioned something akin to a disclosure policy
for the public or their clients, e. g., “Yes, we do. Well, a
policy for coordinated disclosure [. . .]. Internally, we try to
fix it as quickly as possible and only then disclose it.” (P05)
Other companies appear to be in the process of implementing
a disclosure policy, e. g., as mentioned by one participant:
“I guess the organization that kind of writes the standards
that we follow is trying to adopt widespread disclosures
of historical and current cybersecurity threats, but at the
moment I have not seen any of those come out yet.” (P19)

Overall, most participants mentioned some form of policy
or common best practice in their teams, although some of the
company policies seem more focused on fulfilling external
standard or law requirements instead of ensuring the security
of included external components.
Guidance & Documentation. A small majority of our par-
ticipants (14) did mention not having specific documentation
or guidance for OSCs in their projects. As reasons for not
providing specific documentation, participants mentioned
extensive approval processes and sufficiently experienced
developers:

“It sounds like it would be just something to add
to the pile because we already have approval
processes and usually our developers are at least
somewhat experienced and they have seen many
things before [. . .] For other firms, for other
companies, it definitely might make sense.” — P02

Reasons for providing documentation included easier on-
boarding and supporting new developers by providing them
with wrapped, documented versions of OSCs: “We document
[wrapped OSCs], and we present these in-house made com-
ponents to our new developers with a good documentation
and they know how they operate.” (P12) Our participants
seemed to agree on the usefulness of having documentation
for these components and processes, e. g., P13 said: “But
[having some documentation for included OSCs is] a very
good point. We should definitely have something like that
because it’s not always going to be me.” (P13)

Overall, our participants appear to provide documentation
for included components based on their given requirements
and team context, with accessibility for mostly new devel-
opers in larger teams on the one side of the spectrum, to
experienced developers with other processes in smaller teams
on the other side.

Summary: Policies and Guidance. Most projects had some
form of company policy or at least best practices for
including external code. Relatively few had dedicated
security teams or a disclosure policy. Perspectives on
providing documentation appear to depend on the team
context, with larger documentation support being seem-
ingly correlated with larger team size and the number of
less experienced developers.

4.5. Experiences with Open Source Components

Aside from general usage and policies for external code,
we were also interested in participants’ past experiences with
OSCs. Overall, our participants voiced a positive to very
positive opinion about their experiences with the open source
ecosystem, e. g., “[i]t’s great. It’s a very vibrant ecosystem
and you have a plethora of options to use,” (P16) “I would
say pretty good. I like [the open source ecosystem] a lot. It’s
really easy to have issues and get them resolved,” (P23) and
“open source technology and components are very attractive.
They have to be because if not, you’re not going to use them.”
(P15) Multiple participants mentioned a very important or
key role of OSS in the overall software industry, e. g.,

“I think open-source components or open-source
software in general has [a] very important role
in overall software development industry. Whether
companies are developing commercial solutions or
building open-source or free solutions, they play a
very important role.” — P10

as well as: “So [the ability to talk with maintainers] is why
I feel that they really help us to accelerate our process
of development and are pretty much a cornerstone of the
software industry today.” (P17) A common theme for the
usage experience of OSCs was the friendliness and openness
of the open source communities, e. g., for questions “[‘open-
source project’] says if we find any question, there is always
a community back there to answer whatever we need,” (P07)
and for better understanding the structure:

“[. . .] when we talk to them and try to understand
why something is built a certain way or not, most
of them will be open to sitting down and having
a discussion, and even in cases allowing us to
help them change something for the better or for
a completely new feature.” — P17

This theme also included the ability to easily file issues (and
get them resolved), e. g., “[t]here are always issue trackers
where you can flag any problems you have. I think I went
into one case where we didn’t have to put the issue up
ourselves because that was already flagged by other users
of the component” (P06) and “If there is a breaking change,

we don’t have to think about it, we just have to create an
issue on the parent or the maintenance repository and they
take care of making this in the next version.” (P07) Further
positive attributes of OSCs mentioned by our participants
included speeding up development of their projects, e. g.,
“[open source software] has allowed us to develop much
quicker or develop applications more quickly using a lot
of open source tools as part of the overall application, so
I’m a big proponent of open source software” (P19) and
overall good code quality: “So I have always particularly
really liked the open source industry and what they provide,
because if you go to see the code quality in most of these
projects it is really good and they do cover a lot of use
cases.” (P17)

Importance of Documentation. We specifically inquired
about the setup experience of open source components,
and multiple participants mentioned that they see a good
documentation as quite crucial for a good experience when
using OSCs, e. g., “I remember when I was junior or new
in this open-source side [. . .] It was quite hard to set up or
test or check or find the documentation, etc., but when you
get used to it, it’s mostly intuitive” (P11) and “It depends
on how good the documentation is [. . .] Some people just
write terrible documentation or they just don’t write it at
all. I think depending on how good they are, that can make
your experience either very good or very bad.” (P23)

Our participants seem to be divided on the actual state
of documentation for OSCs, with some negative experiences
on the one side, e. g., “[m]y general experience with this
technology is that there’s a lack of documentation some-
times [. . .] there’s more documentation and examples from
the private software because of course, you’re paying for
the documentation as a client” (P15) and some positive
expressions on the other side, e. g., “[i]f those are popular
components, they’re usually very comfortable to use because
they have examples on their website. They have a little demo
version [. . .] and [you can] even edit the code on it and then
just copy and paste it into your project.” (P25) As mentioned
by P25, the quality and available documentation for OSCs
appears to be often directly correlated with the popularity of
the project, with more popular projects likely having more
maintainer-hours available for creating documentation.

Customization and Using Components Again. More than
half of our participants (14) mentioned that they had to cus-
tomize an OSC for their projects beyond basic configuration
changes, e. g., “Yes. There’s been times where contributing or
even bringing in our own package, there’s been a few times
where I’ve forked and customized the open source repository,
too.” (P20) Participants also mentioned contributing back
some of their customization and improvements to the open
source projects, e. g., “We’ve also contributed back to the
code base or the open source project to try to get changes
implemented as well.” (P19) When asked whether they would
select the same components again for a project, 17 responded
positively, e. g., “we are using our popular frameworks, our
popular open-source components again and again and again.
We have already set up a documentation for that.” (P12) Of

the remaining, six responded somewhat negatively, e. g., “I
think we could do with a few dependencies less because they
are not really critical and they just add a nice-to-have feature
[. . .] Some dependencies were pulled in that if starting over,
I would probably try to avoid.” (P05)

Overall, our participants had quite positive experiences
with OSCs. Their highlights include, among others, the ability
for fast iteration in their projects, the lessened maintenance
burden, and the general openness of the communities and
code, allowing them to understand, modify, and contribute
to the open source projects that our participants utilize in
their software. We see promising research venues in what
constitutes a high-quality open source documentation and
how to best support the customization of components without
sacrificing security.

Summary: Experiences. Our participants mentioned almost
exclusively positive experiences, although some highlight
the varying quality of documentations. Mentioned positive
attributes included the ability to open issues (that get re-
solved) and the ability to directly talk to maintainers. Most
of our participants would select the same components in
some form again, given the choice.

4.6. Challenges and Incidents

Almost all of our participants (24) reported to have
encountered some form of security challenge or annoyance
related to OSCs in the past. Our participants mentioned
challenges related to updates: “One day, all of a sudden,
the system stopped responding because the PHP updates
didn’t follow in that particular package,” (P08) as well as
out-dated and potentially vulnerable components. Another
common theme was OSCs being no longer maintained or
deprecated, e. g., as described by P17: “Yes, dependency is
no longer maintained is a big challenge” (P17) but they
also highlight their way forward of forking or looking
for alternatives: “At that time we will start maintaining it
ourselves privately, or else see if somebody else has started
a version two.” (P17) Other participants mentioned that they
updated their development process when they became aware
of prevalent incidents (but were not affected) in the open
source ecosystem, e. g.,

“I believe it is also was a Node.js developer who
deleted all their repositories [. . .] and that is when
we implemented cache for everything that we have
a local copy for every open source component we
are integrating in our build chain to be locally
available.” — P03

The participant is likely referring to the “left-pad” incident
from early 2016, which involved a maintainer deleting their
popular npm packages, including the widely-used “left-pad”
package included in, and thus breaking, many other npm
packages [80].
Incident Opinion and Strategy. To investigate our partici-
pants’ strategies for handling trust incidents, we introduced
and asked them for their opinion of the March 2022 “node-
ipc protestware” incident [5]. In this protestware incident, the

JavaScript node-ipc library was updated by the maintainer as
a protest to Russia’s invasion of Ukraine to, depending on
library version and IP address, replace all of the user’s system
files with heart emojis. The majority of our participants had
a mostly negative opinion of the incident (16), followed by
a neutral opinion (6), and no opinion (3). No participant had
a mostly positive opinion of the incident. Negative opinions
mostly focused on the potential damage done to trust in the
open source ecosystem and the potential to harm bystanders,
e. g., “I don’t think that’s appropriate when we’re talking
about security and trust [. . .] I don’t really consider that
inclusive of all people trying to use open source. Sorry, I
don’t really agree with that,” (P23) the overall malicious
look of the changes: “That is just straight up malicious, that
is a very black hat thing to do, and that should not even have
reached a package manager,” (P02) as well as the overall
damage to OSS’s reputation: “It’s bad for reputation of
open-source software, but these things happen in commercial
software also. [. . .] Some people want to use them for, as
you said, for protesting purposes and some people want to
use them for malicious activities.” (P12)

With this recent incident as background, we asked our
participants, what they would do if one of their projects
depended on this package and how their general strategy for
incidents would look like if a component or maintainer lost
their trust. Most participants mentioned that they had not
encountered something like that before, e. g., “No. We had
never had this incident or something like that, so we never
thought about what we should do if this ever occurs.” (P03)
Common strategies for handling such incidents included
finding an (open source) alternative, e. g., “If we lose trust
in a component, we’d also try to find an alternative. I guess
it’s a trade off, [if] it’s the only alternative and we really
need it, then we would have to think about how to make it
more trustworthy or maybe contribute upstream,” (P05) or
assessing the damage first before taking any further steps, as
mention by P12: “Try to minimize the bad effects and try to
contain the bad effects. Then I can maybe complain about
the reputation of open-source software, but my first priority
is to go ahead and fix the issue if it affects us.” (P12)

Overall, most participants mentioned not having consid-
ered or encountered such an incident before. In general, their
first strategy would consist of either finding an alternative,
stepping up and forking the project, maintaining the project
internally, or assessing the damage first before any further
steps. Providing tooling and strategies that support developers
in handling such incidents present a promising opportunity
for both researchers and industry.

Summary: Challenges and Incidents. Almost all of our
participants had encountered (security) challenges or
inconveniences related to OSCs, often mentioning broken
updates and vulnerabilities in (out-dated) components. Our
participants had mostly a negative opinion of the “node-
ipc protestware” incident, mainly due to harming the trust
in the open source ecosystem. Most did not mention a
specific strategy for reacting to such incidents and would

generally look for alternatives.

4.7. Problems and Improvements

In the final question section, we asked our participants
what they think the perceived security of their projects is
(both by internal and external actors), as well as how they
would like to improve the software supply chain security of
their projects. Regarding the perception within their team
or company, seven mentioned a mostly positive perception
regarding their security, four a mostly negative, with the rest
reporting either a neutral (5) or no perception. Regarding the
perception of external actors (e.g., their clients, their users,
or the public), nine mentioned a mostly positive perception
regarding their security, zero a mostly negative, and again
the rest reporting either a neutral (3) or no perception.

Improving Security. As for suggestions for improving the
software supply chain security of their projects assuming
no limitations, we roughly sorted our participants’ ideas by
theme, with the most mentioned including the auditing of
their dependency graph and the code of external compo-
nents (8), e. g., “It would be nice to have independent audits
of everything that we use, that way, we can have some level
of assurance that at least the software that we’re using or
components we’re using meets some particular standard”
(P09) and in general more developer hours (3) for testing
and securing their projects or adopting OSCs, e. g., “[. . .] I
would like to have enough developers that we do not have
to go through some of those dependencies which are not
highly rated on GitHub or which are nearing the end of
their maintenance lifecycle, and be able to develop those in-
house.” (P17) Other ideas for improvement included hiring
a dedicated security team (2): “If I have unlimited money,
then a security team would be fine, but that’s not a reality in
most enterprise” (P18) or establishing a set of best practices
and documentations for open source communities (2): “I
think having some set of best practices out there that is
more widely accepted among the open source development
community and I guess rigid guidelines in such a way would
improve what we use it for and how we use it.” (P19) Another
suggestion was the creation of a foundation or entity that
could verify the security of OSCs:

“[T]here can be a security foundation that can offer
this analysis and certification for the open source
if you pay. I can be more comfortable or more
confident about the technology that I’m going to
propose to my boss or to the client. I can say, hey,
this software is open source, but it has already
been tested by this other open source foundation,
but focus on security.” — P15

Such a recently formed organization is the OpenSSF, which
aims to improve open source software security through a
collaborative effort—potentially highlighting a need to raise
even more awareness for such efforts.

Overall, our participants’ ideas for improving the software
supply chain security of their projects mostly centered around

having more developer-hours or tools to audit included com-
ponents, as well as general security checks and penetration
tests of their projects and OSCs. Providing and enabling
the tooling for both auditing and testing OSC provide an
opportunity for both researchers and industry going forward.

Summary: Problems and Improvements. If they had an
opinion about it, most participants thought that their
projects’ security is perceived as positive, both by in-
ternal and external actors. For improving the software
supply chain security of their projects, participants often
suggested manual and automatic audits of code and
dependencies.

5. Discussion

In this work, we qualitatively investigated the role and
importance of OSCs in companies and software teams, as
well as the related security challenges and considerations, by
conducting 25 in-depth interviews with software developers,
architects, and engineers to answer the following research
questions:
RQ1. “How are Open Source Components included in
companies’ tech stacks in terms of position, importance, and
security effects?” Our participants mentioned OSCs in many
positions in their projects, including as project components,
as foundation and frameworks for their software, and as tools
in their development infrastructure. OSCs appeared to play
quite important roles in participants’ projects, with some
reporting using OSC for key features or foundation in their
software or development processes. Some even specifically
mentioned OSCs and the open source community as an
important or key part of their overall software ecosystem.
As for security effects, some participants reported updating
their development processes and dependency handling in
response to news about vulnerabilities in, or the abandoning
of, popular open source projects.
RQ2. “What are companies’ awareness, experiences, and
attitudes regarding the security of including external open
source code?” Overall, our participants consisting of software
developers, architects, and engineers appeared to be quite
aware of the security implications of including OSC in their
software, although some reported management not allowing
or understanding the concept of open source. Almost all
participants reported positive to very positive experiences
with open source code, although all except one mentioned
experiencing some form of challenge or inconvenience by
OSCs in the past, mostly originating from an unmaintained
project, a botched patch, or an upstream vulnerability. Our
participants seemed to have somewhat ambivalent attitudes
about OSC security, with many mentioning that they would
or could only handle incidents from OSCs if/when they
happen, while their most common security wishes included
large-scale audits of their dependencies and OSC projects.
RQ3. “If and how do stakeholders make decisions and
considerations around security and trust challenges of
including Open Source Components?” The decision and

selection processes around OSCs reported by our participants
appear to span the whole spectrum from purpose-build, in-
house components modified by specific teams wrapping and
documenting open source projects, to whatever component
an individual developer thought right for the job. As for
considerations around security, our participants appeared in
general to be optimistic, while still acknowledging the large
potential attack surfaces of using external code.

Aside from answering our research questions, we discuss
some of the broader themes and our interview-spanning
findings in greater detail:
Securing a Bowl of Spaghetti. The “chain” part of the
software supply chain analogy lends itself to convey an
overall image of linear relations, with clear start (producer)
and end (consumer) points, with some additional chain links
in-between. But in reality, a better fitting picture for the
software supply chain in general, and OSS in particular is that
of a giant bowl of spaghetti, with many intertwined strands,
impossible to discern beginning and ends, even when closer
investigating some string. Some companies in our study
tackled this problem by focusing only on the security aspects
on their plate, namely by maintaining in-house versions
or caches of included OSCs, which separates them from
many attack vectors in the whole bowl, and allows them
to better check and audit the local components. Promising
research venues include both the underlying concepts for
maintaining such a software stack separation, as well as
the necessary tooling like for static analysis, reproducible
builds, and package signing. Based on our findings, our
recommendations for industry projects include considering
established available approaches like version pinning and
including static analysis in their build pipeline, as well as to
evaluate some of the more recently emerging technologies,
like SBOMs and metrics like the OpenSSF Scorecards.
Community of Communities. Our participants seemed
to have quite positive attitudes about OSCs, with many
mentioning their software or team benefiting from using them,
e. g., through reduced maintenance burden, fast iterations,
and open communities and code. This exchange can quickly
become one-sided, especially as it is not always feasible for
both companies to provide, and open source communities
to receive, the most common exchange equalizer in the
industry: Money. Promising future research opportunities
involve identifying ways to best support both individual open
source projects in different growth stages and communities,
as well as the open source ecosystem as a whole. Based on
our current findings, it might be beneficial for companies
to approach the open source ecosystem with the mindset
of being just another community among the open source
communities, instead of treating it as another software
supplier. In practice, this could involve the open sourcing
of their internal components if feasible, providing guidance
and help with issues just as most open source projects, and
contributing back if the chance arises.
Not Your Typical Supply Chain. Companies treating the
open source ecosystem as any other of their (software) supply
chains will likely lead to bad surprises for both sides down

the line: Companies might need to scramble if OSCs they had
relied on for years are suddenly abandoned by the maintainer
or do not implement direly needed features, while open
source communities might be punished for their openness by
being (mis)treated as a cheaper support desk and alternative
for in-house development teams. Unlike a company’s other
(software) supply chains, the open source ecosystem rarely
operates based on contracts, and if a company is not able to
provide a value exchange equivalent in money for utilized
OSCs, they might want to consider offering some of their
developer time or code back to the open source ecosystem.
Future researcher venues could involve the legal challenges
of the open source ecosystem, best approaches for different
company types to support or get involved in open source, and
how companies could improve their development processes
around involved OSCs. With industry’s great power of
utilizing freely available OSCs in their software comes also
the great responsibility of keeping the open source ecosystem
healthy and secure, or as one of our participants formulated
it fittingly: “This is something that we also have in our
company policy: Always contribute back.” (P07)

6. Conclusion

We investigated the use of OSCs in software companies
and teams during 25 in-depth, semi-structured interviews with
software developers, architects, and engineers. We explored
challenges and considerations of software companies and
teams around including OSCs in their projects by exploring
their behind-the-scene processes, provided guidance and
security policies, as well as security challenges encountered
in the past and their incident handling. We found that most of
our participants’ projects had some form of company policy
or at least best practices for including external code, with
selection and exclusion criteria for OSCs being commonly
based on easily visible metrics like activity, number of
contributors, or GitHub stars. We also found that most
projects contribute in some form back to open source
projects, or our participants would at least like to, with some
suggesting their management or legal departments do not
fully understand the open source ecosystem. Relatively few
participants mentioned dedicated security teams or experts,
with many wishing for more developer-hours or tools to audit
included components, as well as general security checks and
pen-tests of their projects and included OSCs.

Acknowledgments

This work is supported in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC 2092
CASA – 390781972, NSF grant CNS-2206865, and the
Google Research Scholar program. Any findings and opinions
expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.
We want to thank all interviewees for their participation
and appreciate the industry-insider knowledge and valuable

time that they have generously given. We also thank the
anonymous reviewers for their valuable feedback.

References

[1] RedHat, The State of Enterprise Open Source 2020: Enterprise open
source use rises, proprietary software declines, https://www.redhat.
com/en/blog/state-enterprise-open-source-2020-enterprise-open-
source-use-rises-proprietary-software-declines, Feb. 2020.

[2] W. Turton and K. Mehrotra, FireEye discovered SolarWinds breach
while probing own hack, https://www.bloomberg.com/news/articles/
2020- 12- 15/fireeye- stumbled- across- solarwinds- breach- while-
probing-own-hack, 2020.

[3] C. Cimpanu, SEC filings: SolarWinds says 18,000 customers were
impacted by recent hack, https://www.zdnet.com/article/sec-filings-
solarwinds-says-18000-customers-are-impacted-by-recent-hack/,
Dec. 2020.

[4] Check Point Research, CloudGuard Spectral detects several mali-
cious packages on PyPI – the official software repository for python
developers, https : / / research . checkpoint . com / 2022 / cloudguard -
spectral-detects-several-malicious-packages-on-pypi-the-official-
software-repository-for-python-developers/, Aug. 2022.

[5] L. Tal, Alert: Peacenotwar module sabotages npm developers in the
node-ipc package to protest the invasion of ukraine, https://snyk.io/
blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/,
Mar. 2022.

[6] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the JavaScript package ecosystem,” in Proceedings of the 13th
International Conference on Mining Software Repositories (MSR
’16), 2016, pp. 351–361.

[7] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” in Proceedings of the
14th International Conference on Mining Software Repositories (MSR
’17), 2017, pp. 102–112.

[8] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 11th ACM Joint Meeting on Foundations
of Software Engineering, Aug. 2017, pp. 385–395.

[9] A. Decan, T. Mens, and E. Constantinou, “On the impact of
security vulnerabilities in the npm package dependency network,” in
Proceedings of the 15th international conference on mining software
repositories, 2018, pp. 181–191.

[10] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small-
world with high risks: A study of security threats in the npm
ecosystem,” in Proceedings of the 28th USENIX Conference on
Security Symposium (SEC’19), 2019, pp. 995–1010.

[11] S. Scalco, R. Paramitha, D.-L. Vu, and F. Massacci, “On the
feasibility of detecting injections in malicious npm packages,” in
Proceedings of the 17th International Conference on Availability,
Reliability and Security, 2022, pp. 1–8.

[12] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determi-
nants of sustained activity in open-source projects: A case study of
the PyPI ecosystem,” in Proceedings of the 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2018, pp. 644–655.

[13] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of
security vulnerabilities in python packages,” in Proceedings of the
2021 IEEE international conference on software analysis, Evolution
and Reengineering (SANER ’21), 2021, pp. 446–457.

[14] J. Kabbedijk and S. Jansen, “Steering insight: An exploration of
the Ruby software ecosystem,” in Software Business, vol. 80, 2011,
pp. 44–55.

[15] D. M. German, B. Adams, and A. E. Hassan, “The evolution of
the R software ecosystem,” in Proceedings of the 17th European
Conference on Software Maintenance and Reengineering, 2013,
pp. 243–252.

[16] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella,
“The evolution of project inter-dependencies in a software ecosystem:
The case of Apache,” in Proceedings of the 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 280–289.

[17] R. Bloemen, C. Amrit, S. Kuhlmann, and G. Ordóñez–Matamoros,
“Gentoo package dependencies over time,” in Proceedings of the
11th Working Conference on Mining Software Repositories (MSR
’14), 2014, pp. 404–407.

[18] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[19] Y. Wang, B. Chen, K. Huang, et al., “An empirical study of
usages, updates and risks of third-party libraries in java projects,” in
Proceedings of the 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2020, pp. 35–45.

[20] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of
Android application security.,” in Proceedings of the 20th USENIX
Security Symposium (SEC’11), 2011.

[21] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and
A. E. Hassan, “A large-scale empirical study on software reuse in
mobile apps,” IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[22] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosys-
tems,” Empirical Software Engineering, vol. 24, no. 1, pp. 381–416,
2019.

[23] A. Decan and T. Mens, “What do package dependencies tell us about
semantic versioning?” IEEE Transactions on Software Engineering,
vol. 47, no. 6, pp. 1226–1240, 2021.

[24] Y. Wang, M. Wen, Z. Liu, et al., “Do the dependency conflicts in
my project matter?” In Proceedings of the 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2018, pp. 319–330.

[25] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study of
dependency downgrades in the npm ecosystem,” IEEE Transactions
on Software Engineering, vol. 47, no. 11, pp. 2457–2470, 2021.

[26] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and
mitigation of vulnerabilities in open source dependencies,” Empirical
Software Engineering, vol. 25, no. 5, pp. 3175–3215, 2020.

[27] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees
in the npm ecosystem,” in Proceedings of the 44th IEEE/ACM
International Conference on Software Engineering (ICSE ’22), 2022,
pp. 672–684.

[28] L. Li, T. F. Bissyande, J. Klein, and Y. Le Traon, “An Investigation
into the Use of Common Libraries in Android Apps,” in Proceedings
of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER ’16), 2016, pp. 403–414.

[29] M. Li, W. Wang, P. Wang, et al., “LibD: Scalable and precise third-
party library detection in Android markets,” in Proceedings of the
39th IEEE/ACM International Conference on Software Engineering
(ICSE ’17), 2017, pp. 335–346.

[30] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and accurate
detection of third-party libraries in Android apps,” in Proceedings
of the 38th ACM International Conference on Software Engineering
Companion, 2016, pp. 653–656.

[31] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,”
in Testing – Practice and Research Techniques, Springer, 2010,
pp. 173–180.

[32] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta,
“CrossRec: Supporting software developers by recommending third-
party libraries,” Journal of Systems and Software, vol. 161, Mar.
2020.

[33] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinventing the
wheels? an empirical study on library reuse and re-implementation,”
Empirical Software Engineering, vol. 25, no. 1, pp. 755–789, Sep.
2019.

[34] F. López de la Mora and S. Nadi, “An empirical study of metric-
based comparisons of software libraries,” in Proceedings of the
14th ACM International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE ’18), 2018, pp. 22–31.

[35] ——, “Which library should i use?: A metric-based comparison
of software libraries,” in Proceedings of the 40th IEEE/ACM
International Conference on Software Engineering: New Ideas and
Emerging Technologies Results (ICSE-NIER ’18), 2018, pp. 37–40.

https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-enterprise-open-source-use-rises-proprietary-software-declines
https://www.bloomberg.com/news/articles/2020-12-15/fireeye-stumbled-across-solarwinds-breach-while-probing-own-hack
https://www.bloomberg.com/news/articles/2020-12-15/fireeye-stumbled-across-solarwinds-breach-while-probing-own-hack
https://www.bloomberg.com/news/articles/2020-12-15/fireeye-stumbled-across-solarwinds-breach-while-probing-own-hack
https://www.zdnet.com/article/sec-filings-solarwinds-says-18000-customers-are-impacted-by-recent-hack/
https://www.zdnet.com/article/sec-filings-solarwinds-says-18000-customers-are-impacted-by-recent-hack/
https://research.checkpoint.com/2022/cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-software-repository-for-python-developers/
https://research.checkpoint.com/2022/cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-software-repository-for-python-developers/
https://research.checkpoint.com/2022/cloudguard-spectral-detects-several-malicious-packages-on-pypi-the-official-software-repository-for-python-developers/
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/

[36] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? an empirical study on
the impact of security advisories on library migration,” Empirical
Software Engineering, vol. 23, pp. 384–417, 2018.

[37] C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis, “Sok:
Analysis of software supply chain security by establishing secure
design properties,” in Proceedings of the 1st ACM Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses
(SCORED ’22), 2022.

[38] W. Enck and L. Williams, “Top five challenges in software supply
chain security: Observations from 30 industry and government
organizations,” IEEE Security & Privacy, vol. 20, no. 2, pp. 96–100,
2022.

[39] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment,
Springer International Publishing, 2020, pp. 23–43.

[40] N. Nikiforakis, L. Invernizzi, A. Kapravelos, et al., “You are what
you include: Large-scale evaluation of remote javascript inclusions,”
in Proceedings of the 2012 ACM conference on Computer and
communications security (CCS ’12), 2012, p. 736.

[41] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4Real: A methodology for counting actually vulnerable depen-
dencies,” IEEE Transactions on Software Engineering, vol. 48, no. 5,
pp. 1592–1609, 2022.

[42] G. A. A. Prana, A. Sharma, L. K. Shar, et al., “Out of sight, out of
mind? how vulnerable dependencies affect open-source projects,”
Empirical Software Engineering, vol. 26, no. 4, p. 59, 2021.

[43] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 245–256.

[44] S. Basak, L. Neil, B. Reaves, and L. Williams, “What are the practices
for secret management in software artifacts?” In Proceedings of the
2022 IEEE Secure Development Conference (SecDev’22), 2022,
pp. 69–76.

[45] N. Zahan, S. Shohan, D. Harris, and L. Williams, “Preprint: Do
OpenSSF Scorecard practices contribute to fewer vulnerabilities?”
arXiv preprint arXiv:2210.14884, 2022.

[46] N. Zahan, P. Kanakiya, B. Hambleton, S. Shohan, and L. Williams,
“Preprint: Can the OpenSSF Scorecard be used to measure the
security posture of npm and PyPI?” arXiv preprint arXiv:2208.03412,
2022.

[47] S. Frey, A. Rashid, P. Anthonysamy, M. Pinto-Albuquerque, and
S. A. Naqvi, “The good, the bad and the ugly: A study of security
decisions in a cyber-physical systems game,” IEEE Transactions on
Software Engineering, vol. 45, no. 5, pp. 521–536, 2017.

[48] B. Shreeve, J. Hallett, M. Edwards, K. M. Ramokapane, R. Atkins,
and A. Rashid, “The best laid plans or lack thereof: Security decision-
making of different stakeholder groups,” IEEE Transactions on
Software Engineering, 2020.

[49] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda,
“Can security become a routine? a study of organizational change in
an agile software development group,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and
Social Computing, 2017, pp. 2489–2503.

[50] D. Baca, M. Boldt, B. Carlsson, and A. Jacobsson, “A novel security-
enhanced agile software development process applied in an industrial
setting,” in Proceedings of the 10th IEEE International Conference
on Availability, Reliability and Security, 2015, pp. 11–19.

[51] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in Proceedings of the IEEE Symposium on Security
and Privacy (S&P ’16), 2016, pp. 289–305.

[52] ——, “How internet resources might be helping you develop faster
but less securely,” IEEE Security & Privacy, vol. 15, no. 2, pp. 50–60,
2017.

[53] R. Stevens, D. Votipka, E. M. Redmiles, C. Ahern, P. Sweeney, and
M. L. Mazurek, “The battle for New York: A case study of applied
digital threat modeling at the enterprise level,” in Proceedings of

the 27th USENIX Security Symposium (USENIX Security ’18), 2018,
pp. 621–637.

[54] H. Assal and S. Chiasson, ““Think secure from the beginning” a
survey with software developers,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 2019, pp. 1–13.

[55] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in Proceedings
of the 44th IEEE Symposium on Security and Privacy (S&P ’23),
pp. 167–184.

[56] S. E. McGregor, P. Charters, T. Holliday, and F. Roesner, “Inves-
tigating the computer security practices and needs of journalists,”
in Proceedings of the 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 399–414.

[57] S. E. McGregor, E. A. Watkins, M. N. Al-Ameen, K. Caine, and
F. Roesner, “When the weakest link is strong: Secure collaboration in
the case of the panama papers,” in Proceedings of the 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 505–522.

[58] C. Chen, N. Dell, and F. Roesner, “Computer security and privacy
in the interactions between victim service providers and human
trafficking survivors,” in Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 89–104.

[59] W. Bai, M. Namara, Y. Qian, P. G. Kelley, M. L. Mazurek, and
D. Kim, “An inconvenient trust: User attitudes toward security
and usability tradeoffs for key-directory encryption systems,” in
Proceedings of the 12th Symposium on Usable Privacy and Security
(SOUPS ’16), 2016, pp. 113–130.

[60] K. Gallagher, S. Patil, and N. Memon, “New me: Understanding
expert and non-expert perceptions and usage of the tor anonymity
network,” in Proceedings of the 13th Symposium on Usable Privacy
and Security (SOUPS ’17), 2017, pp. 385–398.

[61] N. Huaman, B. von Skarczinski, C. Stransky, et al., “A large-scale
interview study on information security in and attacks against small
and medium-sized enterprises,” in Proceedings of the 30th USENIX
Security Symposium (USENIX Security ’21), 2021, pp. 1235–1252.

[62] M. Silic and A. Back, “Information security and open source dual
use security software: Trust paradox,” in Open Source Software:
Quality Verification, 2013, pp. 194–206.

[63] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security
during application development: An application security expert
perspective,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018, pp. 1–12.

[64] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea,
“Real life challenges in access-control management,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2009, pp. 899–908.

[65] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama,
and M. Prabaker, “Field studies of computer system administrators:
Analysis of system management tools and practices,” in Proceedings
of the 2004 ACM conference on Computer Supported Cooperative
Work, 2004, pp. 388–395.

[66] D. Botta, R. Werlinger, A. Gagné, et al., “Towards understanding
it security professionals and their tools,” in Proceedings of the 3rd
Symposium on Usable Privacy and Security (SOUPS ’07), 2007,
pp. 100–111.

[67] J. M. Haney, M. Theofanos, Y. Acar, and S. S. Prettyman, ““We make
it a big deal in the company”: Security mindsets in organizations that
develop cryptographic products,” in Proceedings of 14th Symposium
on Usable Privacy and Security (SOUPS ’18), 2018, pp. 357–373.

[68] F. Jansen, S. Jansen, and F. Hou, “Trustseco: An interview survey
into software trust,” arXiv preprint arXiv:2101.06138, 2021.

[69] J. Ghofrani, P. Heravi, K. A. Babaei, and M. D. Soorati, “Trust
challenges in reusing open source software: An interview-based
initial study,” in Proceedings of the 26th ACM International Systems
and Software Product Line Conference-Volume B, 2022, pp. 110–116.

[70] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A. Sasse,
and S. Fahl, “How does usable security (not) end up in software
products? results from a qualitative interview study,” in Proceedings
of the 43rd IEEE Symposium on Security and Privacy (S&P 2022),
May 2022.

[71] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné, Y. Acar, and
S. Fahl, “Committed to trust: A qualitative study on security & trust

in open source software projects,” in Proceedings of the 43rd IEEE
Symposium on Security and Privacy (S&P 2022), May 2022.

[72] M. Fourné, D. Wermke, W. Enck, S. Fahl, and Y. Acar, “It’s like
flossing your teeth: On the importance and challenges of reproducible
builds for software supply chain security,” in Proceedings of the
44th IEEE Symposium on Security and Privacy (S&P 2023), May
2023.

[73] K. Charmaz, Constructing Grounded Theory. Sage, 2014.
[74] A. Strauss and J. M. Corbin, Grounded Theory in Practice. Sage,

1997, p. 288.
[75] J. Corbin and A. Strauss, “Grounded theory research: Procedures,

canons and evaluative criteria,” Zeitschrift für Soziologie, vol. 19,
no. 6, pp. 418–427, 1990.

[76] C. Urquhart, Grounded theory for qualitative research: A practical
guide. Sage, 2012.

[77] M. Birks and J. Mills, Grounded theory: A practical guide. Sage,
2015.

[78] N. McDonald, S. Schoenebeck, and A. Forte, “Reliability and inter-
rater reliability in qualitative research: Norms and guidelines for
CSCW and HCI practice,” Proc. ACM Hum.-Comput. Interact., vol. 3,
no. CSCW, Nov. 2019.

[79] E. Kenneally and D. Dittrich, “The Menlo report: Ethical principles
guiding information and communication technology research,” SSRN
Electronic Journal, Aug. 2012.

[80] S. Gallagher, Rage-quit: Coder unpublished 17 lines of javascript
and “broke the internet”, https : / / arstechnica . com / information -
technology/2016/03/rage- quit - coder- unpublished- 17- lines- of-
javascript-and-broke-the-internet/, Mar. 2016.

https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/

	Introduction
	Replication Package

	Related Work
	Interview Study
	Study Setup
	Interview Structure
	Coding and Analysis
	Ethical Considerations & Data Protection
	Limitations

	Results
	Projects and Participants
	Usage of Open Source Components
	Thoughts about Open Source Components
	Security Policies and Guidance
	Experiences with Open Source Components
	Challenges and Incidents
	Problems and Improvements

	Discussion
	Conclusion

